Séquence 6 de Terminale spécialité \$1

Modéliser un système multiphysique pour en optimiser sa conception en validant ses performances simulées vs celles attendues à l'aide d'une IA.

Support : Astrolab à partir de sa maquette arduino

Didier TOULOUSE

2 Sommaire

- 1 Organisation
- 2 Situation déclenchante
- 3) Le système étudié
- Modèle fonctionnel
- Activité A1-2-3-4: Modéliser et simuler un codeur avec une lA

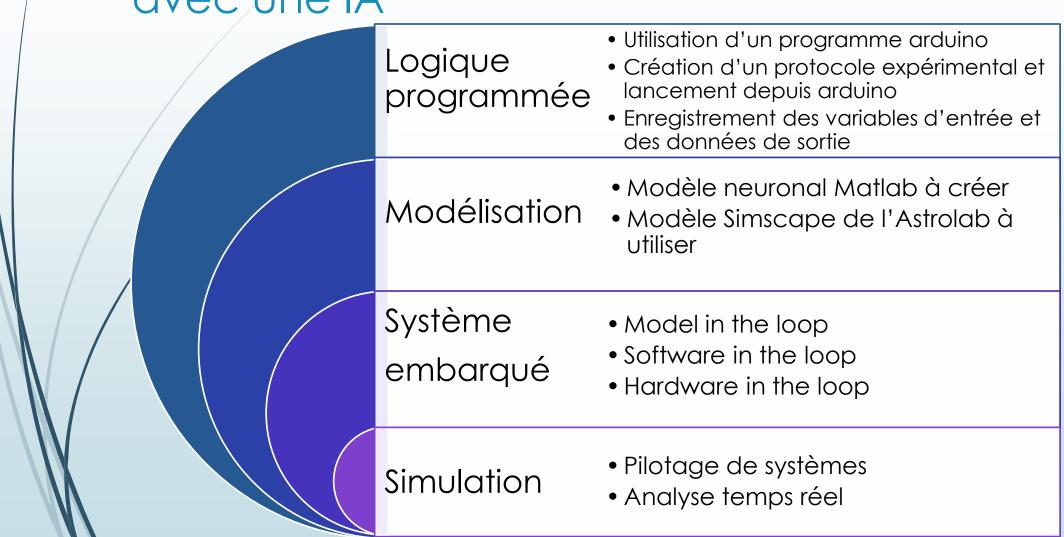
Organisation de la séquence de Terminale

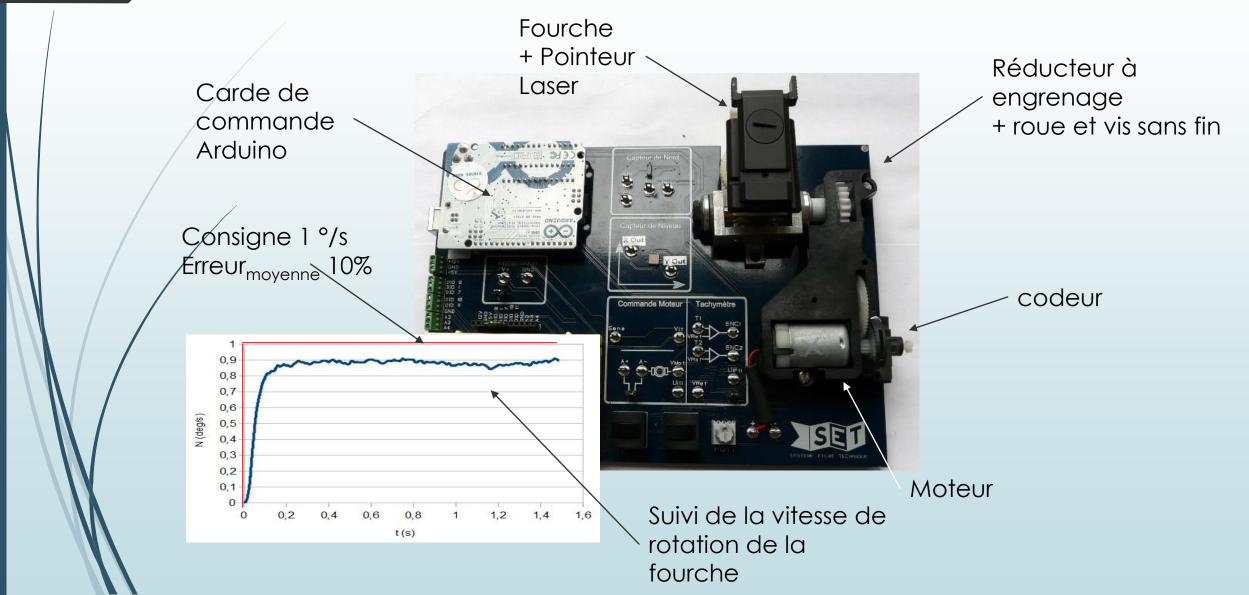
de 🗆	05/		Seq 6 (3 semaines)		Comment fonctionne les intelligences artificielles			
a	02/		Compétences visées		Travaux Expérimentaux SI	Cours - TD SI	Compétences composites	PROJET
semai	05/02/2024	Seq 6 (3 semaines) Comment fonctionnent les intelligences artificielles	A Analyser	A1- Analyser le besoin A2- Analyser le système	Machine learning Classification			Suivi de projet 1 (2h)
ne : 6 à la				B1- Identifier et caractériser les grandeurs agissant sur un système	d'images à l'aide d'un modèle pré-entraîné (1,5h)	Cours - TD Inititation à l'IA (1,5h)	A3_comparer les résultats expérimentaux avec les résultats simulés et interpréter les écarts. B2_préciser les limites de validité du modèle envisagé D1_ Rechercher des informations.	
semaine : 1			в Modéliser	B2- Proposer ou justifier un modèle B3- Résoudre et simuler B4- Valider un modèle	DeepLearning Création d'un CNN par transfert (1,5h)	TD Le perceptron Système : Combinatoire et Porte logique XOR (1,5h)		
0	09/03/2024		D Communiquer	D1- Rechercher et traiter les informations	Apprentissage par renforcement Modélisation du capteur de l'Astrolab par un CNN (2h)	Evaluation Qu'est ce que l'IA (0,5h) Correction (0,25h) évaluation + Synthèse travaux expérimentaux (0,25h)		Conception de la chaine de puissance (1h)

Situations déclenchantes

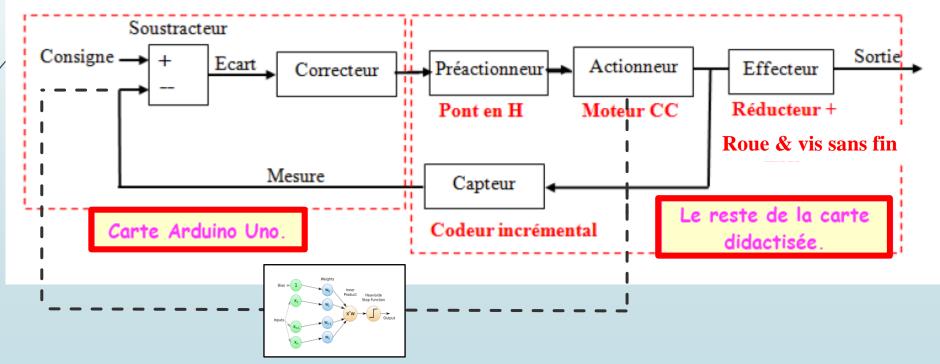
Problématique 1

En **pilotage** de systèmes, il est souvent problématique de trouver les **capteurs adaptés** et surtout de les **connecter** au système

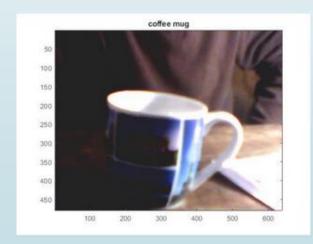

Peut-on **remplacer** un **capteur** par une **IA** entrainée à prédire les données attendues que le capteur est sensé mesurer?

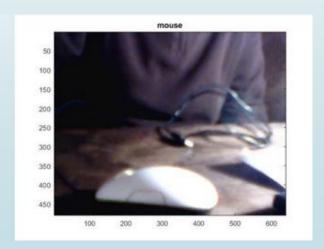

Problématique 2

En **maintenance** des systèmes, il est souvent problématique d'anticiper les futures défaillances des **capteurs** et de les **changer** avant la panne du système


Peut-on placer en parallèle d'un capteur une IA entrainée à prédire les données attendues que le capteur est sensé mesurer et de les **comparer** pour **prédire** une **potentielle défaillance** ?.

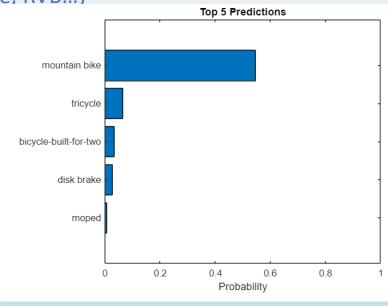
Basé sur la chaîne fonctionnelle d'asservissement


Objectif: proposer une IA pour remplacer le capteur


Activité 11_Utiliser un réseau de neurones pré-entraîné pour détecter le contenu d'une image renvoyée par la webcam

❖ Machine learning supervised dans Matlab

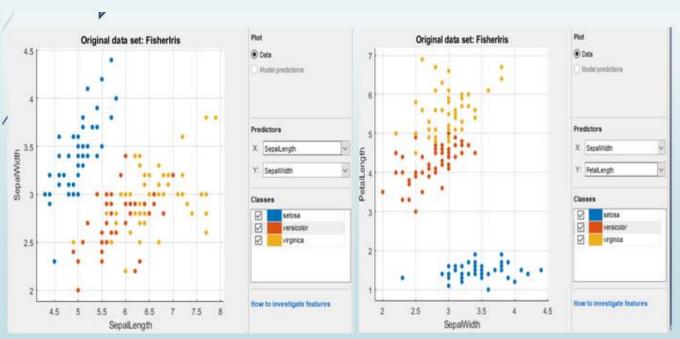
- O Identifier des objets à l'aide d'une webcam et d'une base de données. **AlexNet** est un réseau neuronal de convolution pré-entraîné (CNN) formé sur plus de 1,5 millions d'images et capable de classer les images en 1 000 catégories d'objets (par exemple, clavier, souris, tasse à café, crayon et de nombreux animaux).
- Installer les supports package:
- Tester les supports package:
- O Coder la recherche d'image dans la base de donées



Activité 12_Créer une machine learning pour faire de la classification d'images

Exemple: classification d'images présentes sur un support physique ou sur un lien Internet

- **❖** Machine learning supervised dans Matlab
 - Charger un réseau neuronal de convolution (CNN) Googlenet pré-entraîné formé sur plus de 60 millions d'images et capable de classer les images en 1 000 catégories d'objets (par exemple, clavier, souris, tasse à café, crayon et de nombreux animaux en anglais)
 - Problématique du format d'image utilisée (taille, monochrome, RVB...)
 - Coder la recherche d'image dans la base de données
 - Analyser la pertinence de la prédiction

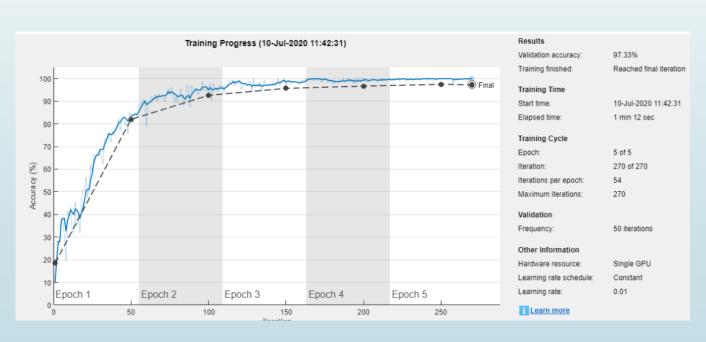


Activité 21_Créer une machine learning pour faire de la classification de plantes

Exemple: classification d'espèces de plantes à partir de leurs caractéristiques

Utilisation de Cassification leaner dans APPS de Matlab

- Utiliser la base de données "fisheriris.csv"
- Créer une variable Datashore
- Alimenter cette variable pour le modèle
- Lancer une session de classification
- O Changer de prédicteur
- Choisir un modèle optimal
- O Exporter le modèle
- Tester et Utiliser le modèle

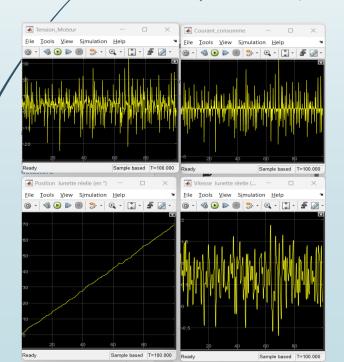


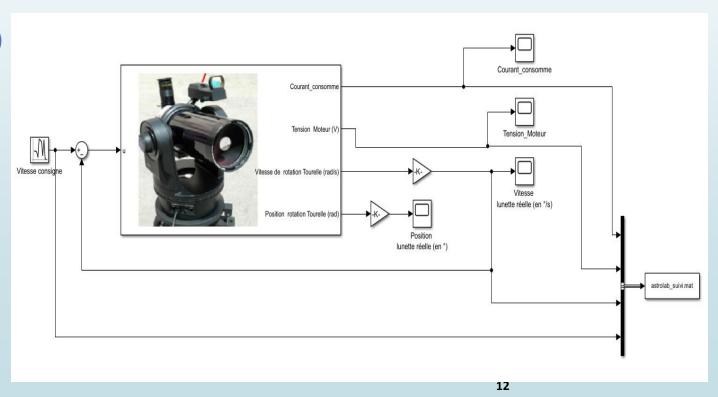
Activité 22_Créer une machine learning par transfert pour remplacer Googlenet

Exemple: apprentissage par transfert en utilisant l'outil de conception Matlab Deep Network Designer

Utilisation du CNN de Googlenet par transfert

- O Création de sa propre base de données (règles, tailles des images...)
- Création d'un réseau vide
- Créer une variable Datashore, chargement de la base de données
- O Modification des couches relatives aux caractéristique de vos images et /ou de la structure du réseau
- Entrainement du réseau
- Exportation du modèle dans le Workspace
- O Tester et Utiliser le modèle avec l'activité précédente.
- o Analyse de la qualité des prédictions
- /Influence des biais, influences des Epocks...




Activité 3_Préparer un Datastore pour entrainer un CNN

Exemple: Préparation des fichiers, dossiers, structures pour la création d'un Datastore

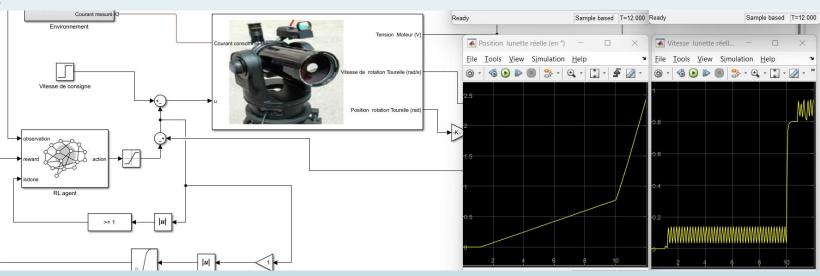
Utilisation de Deep Network Designer dans APPS de Matlab

- Créer la base de données « Astrolab_suivi.mat » à partir d'un modèle Simulink de l'Astrolab
- O Préparer cette base de données pour qu'elle puisse être exploitable dans un datastore
- Créer une variable Datashore
- Alimenter cette variable pour le modèle
- Importer cette Base dans DND
- o /Concevoir le réseau (difficultés, solutions)

Activité 4_Créer et entraîner un réseau de neurones pour un contrôle commande sur l'Astrolab

Entraînement d'un réseau de neurones pour un contrôle commande sur l'Astrolab

Exemple: Remplacement d'un codeur de vitesse de rotation par un CNN dans un système asservi


Utilisation d'un modèle CNN créé par transfert dans Matlab

Vtiliser une base de données perso « Astrolab_suivi.mat"

o / Création d'un CNN par transfert

O Entraînement du réseau

Exportation du réseau dans un modèle Simulink

