<u>Le manège XXL.</u> Le système étudié ici est un manège appelé « Manège à sensations XXL ». L'étude consiste à déterminer l'accélération subie par une personne, et de vérifier que la limite supportable (sans déconfort) par l'homme d'une valeur de 2g n'est pas dépassée...

Khôlle: 13.10.2019

Ce système est constitué de quatre solides :

- La Base **0**, de repère associé $R_0 = (O; \overrightarrow{x_0}; \overrightarrow{y_0}; \overrightarrow{z_0})$, fixe par rapport à la terre telle que l'axe $(O; \overrightarrow{z_0})$ soit dirigé suivant la verticale ascendante,
- Le Bras 1, de repère associé $R_1 = (0; \overrightarrow{x_1} = \overrightarrow{x_0}; \overrightarrow{y_1}; \overrightarrow{z_1})$, en mouvement de rotation, d'axe $(0; \overrightarrow{x_0})$ par rapport à R_0 et tel que $\alpha = (\overrightarrow{y_0}; \overrightarrow{y_1}) = (\overrightarrow{z_0}; \overrightarrow{z_1})$,
- L'étoile 2, de repère associé $R_2=(A;\overrightarrow{x_2};\overrightarrow{y_2};\overrightarrow{z_2}=\overrightarrow{z_1})$, en mouvement de rotation d'axe $(A;\overrightarrow{z_1})$ par rapport au plateau 1 tel que $\overrightarrow{OA}(t)=a\overrightarrow{z_1}(t)$ (avec a constant), et $\beta=(\widehat{x_1};\overline{x_2})=(\widehat{y_1};\widehat{y_2})$,
- Le siège **3** (lié à la personne, de repère associé $R_3 = (A; \overrightarrow{x_3} = \overrightarrow{x_2}; \overrightarrow{y_3}; \overrightarrow{z_3})$, en mouvement de rotation d'axe $(A; \overrightarrow{x_2})$, avec $\gamma = (\overrightarrow{y_2}; \overrightarrow{y_3}) = (\overrightarrow{z_2}; \overrightarrow{z_3})$.
- La position de la personne est définie par son centre de gravité G, qui appartient au siège 3 et avec $\overrightarrow{AG}(t) = b\overrightarrow{x_2}(t) + c\overrightarrow{z_3}(t)$ (avec b et c constants).

Question 1. Réaliser le graphe des liaisons de l'ensemble.

Question 2. Réaliser le schéma cinématique

Question 3. Réaliser les figures géométrales qui définissent les angles $\alpha; \beta; \gamma$.

Question 4. En déduire les vecteurs rotation $\vec{\Omega}(1/0)$, $\vec{\Omega}(2/0)$ et $\vec{\Omega}(3/0)$.

Question 5. Déterminer les trajectoires $T(A \in 1/0)$ et $T(A \in 2/0)$.

Question 6. Déterminer les vecteurs vitesses $\vec{v}(A \in 1/0)$ et $\vec{v}(G \in 3/0)$.

Question 7. Déterminer le vecteur accélération $\vec{a}(G \in 3/0)$ (Vérifier l'homogénéité du résultat).