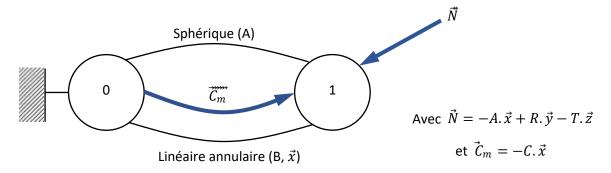
DM 3 : ETUDE STATIQUE D'UN BANC D'ESSAIS (Eléments de correction)

Un grand merci à Antoine Martin pour sa contribution à la correction

Q1. Le poids de l'arbre étant négligé devant les autres actions mécaniques extérieures, on obtient le graphe de structure suivant :



Q2. Nous avons un système composé de 2 pièces. On peut alors écrire 6 équations pour chaque solide. En utilisant la formule suivante : $Es = 6 \times (N-1)$ avec Es le nombre d'équations statiques et N le nombre de pièces (dont le bâti), on obtient alors 6 équations maximales pour ce problème.

Nous avons deux liaisons : une liaison sphérique (ou rotule) en A et une liaison linéaire annulaire d'axe x (ou sphère-cylindre) en B.

La liaison sphérique en A permet 3 mobilités (3 rotations). On obtient donc 3 inconnues de liaison et

un torseur statique s'écrivant :
$$\{T_{0 \to 1}\}_A = \begin{cases} X_A & 0 \\ Y_A & 0 \\ Z_A & 0 \end{cases}_{(A, X, y, z)}$$

La liaison linéaire annulaire d'axe x en B permet 4 mobilités (3 rotations et une translation sur \vec{x} dans notre cas). On obtient donc 2 inconnues de liaison et un torseur statique s'écrivant :

$$\{T_{0\to 1}\}_{B} = \begin{cases} 0 & 0 \\ Y_{B} & 0 \\ Z_{B} & 0 \end{cases}_{(B \xrightarrow{v \to v})}$$

On obtient donc un total de 5 inconnues de liaison.

Il y a donc 5 inconnues de liaison et 1 inconnues d'actions extérieures et 6 équations on peut donc résoudre.

- Q3. On choisit d'isoler le système (1) car nous avons un ensemble représenté par une chaîne, composée de deux pièces, complexe et fermée. On décide donc de s'intéresser à l'élément le plus à l'extérieur de notre chaîne, celui auquel toutes les actions extérieures sont appliquées, soit le système (1).
- **Q4.** On nomme R_1 le repère $(\vec{x}, \vec{y}, \vec{z})$.

On isole l'ensemble (1) soumis aux actions mécaniques extérieures suivantes :

- Action mécanique entre les dents au point P :

$$\{Text \to 1\}_P = = \begin{cases} -A & 0 \\ R & 0 \\ -T & 0 \end{cases}_{(PXYZ)}$$

- Couple moteur:
$$\{T_{mot \to 1}\}_B = \begin{cases} 0 & -C \\ 0 & 0 \\ 0 & 0 \end{cases}_{\text{(B,X,Y,Z)}}$$

- L'action de la liaison sphérique en A : $\{T_{0 \to 1}\}_A = egin{pmatrix} X_A & 0 \\ Y_A & 0 \\ Z_A & 0 \end{pmatrix}_{\stackrel{\rightarrow}{(A \times X y z)}}$
- L'action de la liaison linéaire annulaire d'axe x en B : $\{T_{0 \to 1}\}_B = \begin{cases} 0 & 0 \\ Y_B & 0 \\ Z_B & 0 \end{cases}_{(B,X),Z}$

Q5. L'ensemble (1) est à l'équilibre par rapport au référentiel $(\vec{x}, \vec{y}, \vec{z})$ Galiléen si et seulement si, pour le système (1) et pour tout sous-système matériel de (1), la somme des actions mécaniques du milieu extérieur sur le milieu intérieur est nulle.

Le théorème de la résultante statique donne les 3 équations :

$$\sum \vec{F}_{ext/1} = \vec{0} <=> \begin{cases} -A + X_A = 0 \\ R + Y_A + Y_B = 0 \\ Z_A + Z_B - T = 0 \end{cases}$$

Le théorème du moment statique, en A, donne l'équation :

$$\begin{split} \sum \vec{M}_{A,ext/1} &= \vec{0} <=> \vec{M}_{A,\ Action\ du\ mot/1} + \vec{M}_{A,\ Action\ en\ B\ de\ 0/1} + \\ \vec{M}_{A,\ ActionA\ de\ 0/1} + \vec{M}_{A,\ Action\ en\ P\ de\ ext/1} &= \vec{0} \end{split}$$

Le moment d'un torseur couple étant le même en tout point de l'espace, on a :

$$\{\text{Tmot} \to 1\}_B = \begin{cases} 0 & 0 \\ Y_B & 0 \\ Z_B & 0 \end{cases}_{\text{(B,X,Y,Z)}} <=> \{\text{Tmot} \to 1\}_A = \begin{cases} 0 & -C \\ 0 & 0 \\ 0 & 0 \end{cases}_{\text{(A,X,Y,Z)}}$$

On exprime ensuite les autres moments au point A :

$$\{ \mathbf{T} 0 \to 1 \}_B = \begin{cases} 0 & -\mathbf{C} \\ 0 & 0 \\ 0 & 0 \end{cases}_{(\mathbf{B}, \mathbf{X}, \mathbf{Y}, \mathbf{Z})} <=> \ \{ \mathbf{T} 0 \to 1 \}_{\mathbf{A}} = \begin{cases} 0 & 0 \\ \mathbf{Y}_B & -(l_a + l_b) \times \mathbf{Z}_B \\ \mathbf{Z}_B & (l_a + l_b) \times \mathbf{Y}_B \end{cases}_{(\mathbf{A}, \mathbf{X}, \mathbf{Y}, \mathbf{Z})}$$

$$\{\text{TExt} \to 1\}_{P} = \begin{cases} -\text{A} & 0\\ \text{R} & 0\\ -\text{T} & 0 \end{cases}_{(P, X, Y, Z)} <=> \{\text{TExt} \to 1\}_{A} = \begin{cases} -\text{A} & \frac{D}{2} \times T\\ \text{R} & l_{a} \times T\\ -\text{T} & -\frac{D}{2} \times A + l_{a} \times R \end{cases}_{(A, X, Y, Z)}$$

Q6. En projetant sur les axes du repère R_1 :

D'après l'équation de la résultante :

$$\sum \vec{F}_{ext/1} = \vec{0} <=> \begin{cases} -A + X_A = 0 \\ R + Y_A + Y_B = 0 \\ Z_A + Z_B - T = 0 \end{cases}$$

D'après l'équation du moment résultant en A:

$$\sum \overrightarrow{M}_{A,ext/1} = \overrightarrow{0} <=> \begin{cases} \frac{\frac{D}{2} \times T - C = 0}{l_a \times T - (l_a + l_b) \times Z_B = 0} \\ -\frac{D}{2} \times A + l_a \times R + (l_a + l_b) \times Y_B = 0 \end{cases}$$

On obtient le système d'équation suivant (S) :

$$\begin{cases} X_A = A \\ Y_A + Y_B = -R \\ Z_A + Z_B = T \end{cases}$$

$$C = \frac{D}{2} \times T$$

$$(l_a + l_b) \times Z_B = l_a \times T$$

$$(l_a + l_b) \times Y_B = \frac{D}{2} \times A - l_a \times R$$

Or d'après l'énoncé :
$$T=1,295\times R$$
 et $T=8,418\times A$
$$X_{\rm A}=A$$

$$Z_{A} + Z_{B} = 8,418$$

$$C = \frac{D}{2} \times 8,418A$$

$$Z_{B} = \frac{l_{a} \times 8,418 \text{ A}}{(l_{a} + l_{b})}$$

$$Y_{B} = \frac{\left(\frac{D}{2} - l_{a} \times \frac{8,418}{1,295}\right)}{4}A$$

En effectuant les applications numériques, on obtient :

A = 1,9× 10³ N
T = 16 × 10³ N

$$X_A = 1,9 \times 10^3 N$$

 $Y_A = -9,2 \times 10^3 N$
 $Z_A = 9,7 \times 10^3 N$
 $Y_B = -3,2 \times 10^3 N$
 $Z_B = 6,4 \times 10^3 N$

On calcule maintenant les efforts maximaux supporté par chacun des roulements :

$$\|\overrightarrow{R_A}\| = \sqrt{(1.9 \times 10^3)^2 + (-9.2 \times 10^3)^2 + (9.7 \times 10^3)^2}$$

$$\|\overrightarrow{R_B}\| = \sqrt{(-3.2 \times 10^3)^2 + (6.4 \times 10^3)^2}$$

$$\|\overrightarrow{R_A}\| = 13505 N (13479 N)$$

$$\|\overrightarrow{R_A}\| = 7155 N (7118 N)$$

Le cahier des charges est donc respecté car les deux efforts sont inférieurs à 15000 N comme attendus par l'exigence « Performances des roulements ».

Q8. Le problème est dit isostatique, on peut donc le résoudre par une méthode statique, le nombre d'équations étant suffisant par rapport au nombre d'inconnues.

On nomme R_2 le repère $(\vec{x}, \vec{y}, \vec{z})$.

On isole l'ensemble « moteur » soumis aux actions mécaniques extérieures suivantes :

- Poids:

$$\left\{T_{pes \rightarrow moteur}\right\}_{G} = \left\{\begin{matrix} -m.\,g.\,\vec{z} \\ \vec{0} \end{matrix}\right\} = \left\{\begin{matrix} 0 & 0 \\ 0 & 0 \\ -m.\,g & 0 \end{matrix}\right\}_{G,R_{2}}$$

Couple moteur :

$$\left\{T_{frein \to moteur}\right\}_{O} = \left\{\begin{matrix} \vec{0} \\ C_{r} \cdot \vec{x} \end{matrix}\right\} = \left\{\begin{matrix} 0 & C_{r} \\ 0 & 0 \\ 0 & 0 \end{matrix}\right\}_{O,R_{2}}$$

- L'action de la liaison sphérique en A :
$$\{T_{b\hat{a}ti \to moteur}\}_A = \begin{cases} X_A & 0 \\ Y_A & 0 \\ Z_A & 0 \end{cases}_{A,R_2}$$

- L'action de la liaison linéaire annulaire d'axe y en B :
$$\{T_{b\hat{a}ti \to moteur}\}_B = \begin{cases} X_B & 0 \\ 0 & 0 \\ Z_B & 0 \end{cases}_{B,B,2}$$

- La liaison sphère/plan en C permet 5 mobilités (3 translations et 2 rotations sur \vec{x} et \vec{y} dans notre cas). On obtient donc un torseur statique s'écrivant :

$$\{T_{b\hat{a}ti \rightarrow moteur}\}_C = \begin{cases} 0 & 0 \\ 0 & 0 \\ Z_C & 0 \end{cases}_{C,R_2}$$

On suppose le moteur à l'équilibre par rapport au référentiel $(\vec{x}, \vec{y}, \vec{z})$. Galiléen et la somme des actions mécaniques extérieures sur celui-ci est nulle. On peut donc écrire le principe fondamental de la statique sous forme des deux théorèmes suivants :

Le théorème de la résultante statique donne l'équation :

$$\vec{R}_A + \vec{R}_B + \vec{R}_C + \vec{P} = \vec{0}$$
 Avec $\vec{R}_A = X_A . \vec{x} + Y_A . \vec{y} + Z_A . \vec{z}$
$$\vec{R}_B = X_B . \vec{x} + Z_B . \vec{z}$$

$$\vec{R}_C = Z_C . \vec{z}$$

$$\vec{P} = -m. g. \vec{z}$$

Le théorème du moment statique, en P, donne l'équation :

$$\sum \vec{M}_{A,ext/mot} = \vec{0} <=> \vec{M}_A(b\hat{a}ti\ en\ A/mot) + \vec{M}_A(b\hat{a}ti\ en\ B/mot) + \vec{M}_A(b\hat{a}ti\ en\ C/mot) + \vec{M}_A(frein/mot) + \vec{M}_A(pes/mot) = \vec{0}$$

Résolution donnée en éléments de réponse.

Le moment d'un torseur couple étant le même en tout point de l'espace, on a :

$$\left\{T_{frein \rightarrow moteur}\right\}_{O} = \left\{\begin{matrix} 0 & C_{r} \\ 0 & 0 \\ 0 & 0 \end{matrix}\right\}_{O,R_{2}} = \left\{T_{frein \rightarrow moteur}\right\}_{A} = \left\{\begin{matrix} 0 & C_{r} \\ 0 & 0 \\ 0 & 0 \end{matrix}\right\}_{A,R_{2}}$$

On exprime ensuite les autres moments au point A :

$$\vec{M}_A(b\hat{a}ti\ en\ B/mot) = \vec{M}_B(b\hat{a}ti\ en\ B/mot) + \overrightarrow{AB} \wedge \vec{R}_A$$

$$\vec{M}_A(b\hat{a}ti\ en\ B/mot) = l_{yB}.\vec{y} \wedge (X_B.\vec{x} + Z_B.\vec{z})$$

$$\vec{M}_A(b\hat{a}ti\ en\ B/mot) = -l_{yB}.X_B\vec{z} + l_{yB}.Z_B.\vec{x})$$

 $\vec{M}_A(b\hat{a}ti\ en\ B/mot) = mgl_{YG} \cdot \vec{y} - mgl_{YG} \cdot \vec{x})$

$$\begin{aligned} \text{Soit}: & \{T_{b\hat{a}ti \rightarrow moteur}\}_A = \begin{pmatrix} X_B & l_{yB}.Z_B \\ 0 & 0 \\ Z_B & -l_{yB}.X_B \end{pmatrix}_{A,R_2} \\ & \vec{M}_A(b\hat{a}ti\ en\ C/mot) = \vec{M}_C(b\hat{a}ti\ en\ C/mot) + \overrightarrow{AC} \wedge \vec{R}_C \\ & \vec{M}_A(b\hat{a}ti\ en\ B/mot) = \left(l_{xC}.\vec{x} + l_{yC}.\vec{y} + l_{zC}.\vec{z}\right) \wedge Z_C.\vec{z} \\ & \vec{M}_A(b\hat{a}ti\ en\ B/mot) = -l_{xC}.Z_C\vec{y} + l_{yC}.Z_C.\vec{x}) \end{aligned}$$

$$\begin{aligned} \text{Soit}: & \{T_{b\hat{a}ti \rightarrow moteur}\}_A = \begin{pmatrix} 0 & l_{yC}.Z_C \\ 0 & -l_{xC}.Z_C \\ Z_C & 0 \end{pmatrix}_{A,R_2} \\ & \vec{M}_A(pes/mot) = \vec{M}_G(pes/mot) + \overrightarrow{AG} \wedge \vec{P} \\ & \vec{M}_A(b\hat{a}ti\ en\ B/mot) = \left(l_{xG}.\vec{x} + l_{yG}.\vec{y} + l_{zG}.\vec{z}\right) \wedge (-mg.\vec{z}) \\ & \vec{M}_A(b\hat{a}ti\ en\ B/mot) = mgl_{xG}.\vec{y} - mgl_{yG}.\vec{x}) \end{aligned}$$

$$\begin{aligned} \text{Soit}: & \{T_{pes \rightarrow moteur}\}_A = \begin{pmatrix} 0 & -l_{yG}.m.g \\ 0 & l_{xG}.m.g \\ -m.g & 0 \end{pmatrix}_{A,R_2} \\ & \vec{M}_A(pes/mot) = \vec{M}_G(pes/mot) + \overrightarrow{AG} \wedge \vec{P} \\ & \vec{M}_A(b\hat{a}ti\ en\ B/mot) = \left(l_{xG}.\vec{x} + l_{yG}.\vec{y} + l_{zG}.\vec{z}\right) \wedge (-mg.\vec{z}) \end{aligned}$$

En projetant sur les axes de R₂ :

• D'après l'équation de la résultante :

$$/\vec{x}: X_A + X_B = 0$$

 $/\vec{y}: Y_A = 0$
 $/\vec{z}: Z_A + Z_B + Z_C - m. g = 0$

• D'après l'équation du moment résultant :

$$/\vec{x}$$
: $C_r + l_{yB}$. $Z_B + l_{yC}$. $Z_C - l_{yG}$. $m. g = 0$
 $/\vec{y}$: $-l_{xC}$. $Z_C + l_{xG}$. $m. g = 0$
 $/\vec{z}$: $-l_{yB}$. $X_B = 0$

Résolution : $X_A = X_B = Y_A = 0$

$$Z_C = \frac{mgl_{xG}}{l_{xC}}$$

$$Z_B = \frac{-\frac{mgl_{xG}}{l_{xC}}l_{yC} + mgl_{yG} - C_r}{l_{yB}}$$

$$Z_A = mg - Z_B - Z_C$$

Q9. On rappelle que : l_{yB} . $\vec{y} = -300$. \vec{y}

$$l_{xC}$$
. $\vec{x} + l_{vC}$. $\vec{y} + l_{zC}$. $\vec{z} = 600$. $\vec{x} - 150$. $\vec{y} + 350$. \vec{z}

$$l_{xG}$$
. $\vec{x} + l_{yG}$. $\vec{y} + l_{zG}$. $\vec{z} = 150$. $\vec{x} - 100$. $\vec{y} + 150$. \vec{z}

L'énoncé ne précisant pas les unités des grandeurs utilisées, on prendra des mm pour les longueurs et des N.m pour le couple résistant et g=10 m.s⁻².

Soit
$$C_r = 100 \ N. \ m$$

On calcule facilement $Z_{\mathcal{C}}$ avec les données de l'énoncé puis on calcule $Z_{\mathcal{B}}$ avec la formule

$$Z_B = \frac{-\frac{mgl_{\chi G}}{l_{\chi C}}l_{\gamma C} + mgl_{\gamma G} - c_r}{l_{\gamma B}} \text{trouvée précédemment. Enfin, on calcule } Z_A \text{ à l'aide de l'expression}$$

$$Z_A = mg - Z_B - Z_C$$

En effectuant les applications numériques, on obtient :

$$X_A = 0$$

$$Y_A = 0$$

$$Z_A = 100 N$$

$$XB = 0$$

$$Z_B = 500$$
N

$$Z_C = 200 N$$